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ABSTRACT

The present research work is an investigation into the

behavior of liquid oxygen LOX compatibility of aluminum

lithium ( A1-Li ) alloys. Alloy systems of Alcoa 2090,

vintages 1-3, and of Martin Marietta Corporation MMC
Weldalite 049 were evaluated for their behavior related to

the LOX compatibility employing liquid oxygen impact test

conditions under ambient pressures and upto 1000 psi. The

developments of these aluminum lithium alloys are of crltical

an,__ si_niTicant interest because of their lower densities and

higher specific strengths and improved mechanical properties

at cryogenic temperatures. Of the different LOX impact tests

_arried out at the Marshall Space Flight Center (MSFC) , it

is seen that in certain test conditions at higher pressures ,

not all A1-Li alloys are LOX compatible. In case of any

reactivity, it appears that lithium makes the material more

sensitive at grain boundaries due to microstructural

inhomogeneities and associated precipitate free zones (PFZ).

The objectives of this research were to identify and

rationalize the microstructural mechanisms that could be

related io LOX compatibility behavior of the alloy system in

_n_ideration.

The LOX compatibility behavior of A1-Li 2090 and

Weldal_te 049 is analyzed in detail using microstructural

_haracterization techniques with light optical metallography,

So,arming Electron Micropscopy (SEM) , electron microprobe

an_i'_,sis , and surface studies using Secondary Ion Mass

Spectrometry (SIMS), Electron Spectroscopy in Chemical

Analysis (ESCA) and Auger Electron spectroscopy (AES).

Differences in the behavior of these aluminum lithium alloys

_re assesed and related to their chemistry , heat treatment

conditions and microstructural effects.
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I. INTRODUCTION

The developments of the new aluminum lithium A1-Li
alloys have been driven due to high performance demands of
aerospace applications and for use of materials in Space
Transportation Systems and as cryotankage materials. Lithium
i_ the lightest element and the only metal, with the
e×ception of beryllium that is toxic , expensive and
di_fic_,It to qlse , which alloyed with aluminum is known to
improve both the modulus and the density of these A1-Li
alloys in place of current conventional alloys. This can
reduce the weight by 7-15 % and increase the elastic modulus
h_ 10-20 %. For these and several other special advantages,
the aluminum lithium alloys are now gaining considerable
importance as the future advanced aerospace materials.(1,2).
IJnderstanding the behavior of these materials is of special
interest to MSFC and of particular interest is the cryogenic
behavior and the LOX compatibility behavior of these
materials as this could advance and affect the applications
of these aluminum lithium alloys as the future advanced
cryogenic materials.

Design and developmental aspects of certain A1-Li based
alloys (3-11), their fundamental characteristics, special
advantages at cryogenic temperatures, superior fracture
toughness at ambient and cryogenic temperatures, and the
corrosion and weldability of these high strength AI-Li alloys
(12-16) have all shown immense potentials of these developing
aluminum lithium based alloys. For these potentials to be
realized, further in-depth scientific and technological,

_ommercial evaluations of these alloy systems are essential

and vital to the future development of these alloy systems.

The cryogenic behavior of the A1-Li 2090 has exhibited

improved fracture toughness between room temperature 298K and

llqu2d helium 4K temperatures (12-14). This improved strength

_oughness relationship is similar to the earlier data of J.

f_lazer et. al. (12) on standard aerospace and 2219 aluminum

alloys. However, the origin of this behavior is not clear and

further such behavior has not been shown in the short

_ra_isverse orientations and has not been found for all alloys

._nd aging conditions. There is clearly need to evaluate the

cryogenic mechanical behavior of the developing AI-Li alloys

and to understand the mechanisms responsible for such

behavior and relationships between the microstructures and
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potential cryogenic properties. A good description and
understanding of the microstructures and development of
microconstituents is essential to the understanding of such
structure property relationships.

Of the many potential applications for the A1-Li alloys,
th_ most prominent are as cryotankage materials and for
LOX environments. In recent LOX impact compatibility tests at
MSFC, it is seen that not all AI-Li alloys of different
chemistry and specifications are compatible under some test
conditions at higher pressures. The reasons for these LOX
sef_sitivity and the mechanisms related to the LOX
compatibility are not currently understood and this research
has been undertaken to identify the causes of such reduced
LOX compatibility and sensitivity of certain specimens of
A1-Li alloys and their related microstructural mechanisms.
This investigation has centered on the evaluations of
material supplied by Alcoa of A1-Li 2090,T8E41, vintages 1-3,
and oT Weldalite 049 alloys T4 and T8 tempers supplied by the
Martin Marietta Corporation.

OT the LOX impact tests ,as per NHB 8060.1B (17), using
the Army Ballistic Missile Agency ABMA type tester,in the
tests carried out it has been observed that Weldalite 049 is
mostly seen as compatible but more tests are required. The
Alcoa 2090 exhibited improvements from vintage 1 to vintage
3. No reaction was observed in the vintage 3 materials. The

m_chanisms of the LOX compatibility and sensitivity were

analyzed using metallographic techniques, x-ray diffraction,

SEM and microprobe studies, and surface studies using ESCA,

SIMS and Auger spectroscopy and related to microstructural

characterizations, chemistry and processing conditions of the

specific A1-Li alloys.
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II. OBJECTIVES

The objectives of this research that has been pursued are:

0 Evaluation of LOX Compatibility Impact Test
proced_tres , testing , and data analysis

0 Characterization of the microstructures of the aged
and unaged 2090 and Weldalite 049 in suitable tempers
in sheet and / or plate form of the typical

"as received", "reacted" and "unreacted" LOX

tested material specimens

0 Analyses of LOX test results, their predicted

behavior, relationships with material chemistry and

tempers, and microstructural characterization

0 Correlation of material properties with microstructure

and test results

(-_Development of rationale for LOX Compatibility
criteria and material behavior
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III. EXPERIMENTALPROCEDURES

The starting materials comprised of aluminum lithium
alloys 2090-T8E41, in vintages 1-3, supplied by Alcoa and
from Weldalite 049 alloys of T4 and T8 tempers supplied by
Martin Marietta Corporation and also of conventional aluminum
copper Alcoa 2219 materials. These several formulations and
tempers were produced by appropriate solution heat treatment,
quenching, cold work and aging for suitable time and
temperature conditions. Details of the tested 2090,
Weldalite 049 and 2219 alloy chemistry, heat treatment and
temper conditions are provided in Table 1. All test materials
were produced as 11/16-in. diameter discs, .063-in. / or

.125 in. thick, and tested as per NHB 80bO. 1B using the Army

Ballistic Missile Agency ABMA type impact tester. The test

m_thod is similar to standard ASTM D 2512.82 for

compatibility of materials with liquid oxygen (18). All of

the necessary and special precautions as in the test

specifications are strictly adhered to in carrying out the

LOX impact compatibility tests. This includes special

degreasing_ cleaning, drying and packing of the test

specimens before carrying out of the actual LOX impact tests.

In accordance with NHB 8060.1B, a material is considered

to have material sensitivity if at shows any reaction in 20

successive impact tests at 10 kg-m (72 ft.-lbs) . A material

is said to show sensitivity or reaction if the test results

in any of the conditions such as : audible explosion, flash,

evidence of burning or charring, or major discoloration.

These test criteria are used to evaluate the performance of

all test materials. In order to assess the behavior of the

_090 and Weldalite 049 , selected test specimens of the

typical as received , reacted and unreacted specimens of

these alloy systems wereevaluated using standard

metallographic procedures, ×-ray diffraction, SEM, electron

microprobe analysis, ESCA, SIMS and Auger spectroscopy in an

_Ffort to analyze the microconstituents and their behavior

related to LOX impact compatibility of these particular A1-Li

Metallographic analyses for microconstituent

characteristics , inhomogeneities, any precipitate free zones
F'FZ deformation and heat treatment effects etc. were

carried out using standard procedures and suitable etching

techniques. The grain boundaries seem to have shown enhanced
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effects with use of the differential interference contrast
DIC microscopy. Where possible, microhardness measurements
were taken of certain Cu/Fe rich precipitates In
conjunction with metallographic analyses , some SEM and
electron probe microanalysis work was performed. This
revealed presence of A1 in base material and some Cu/Fe rich
particles as evidenced by SEM and microprobe analyses. These
analyses ,however, were not capable to characterize and
identify the presence of Li. The SEM scanning electron
microscopy with energy dispersive analysis was carried out on
Cambridge Stereoscan Model 250 Mark II, and microprobe work
_s carried on CAMICA SX model. The analyses of the presence
of lithium and lithium related phases by the ESCA, SIMS and
Auger spectroscopy techniques of reaction products o_ some of
the test specimens were carried out. These , however, were
L_Se4U! tO detect Li and to understand the behavior of these
_aterials and nature of some of the reaction products.

The x-ray photo electron spectroscopy (XPS) or the
_le_:tro_ spectroscopy in chemical analysis (ESCA) was
performed on Surface Science Instrument the SSX - 100 ESCA
spectrometer, and the Auger electron spectroscopy (AES) was
performed using Modified Physical Electronics 545 Auger
System. The secondary ion mass spectrometry (SIMSI was
performed on a Modified UTI 100C 3M model. The results of

these several analyses and related microstructural mechanisms

that could be affecting the LOX compatibility behavior o_ the

A1-Li alloys under investigation are presented in the next

section.
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Table 1A Compositions of AA 2090 and
Weldalite 049

AA 2090

Li Cu

1.9-2.6 2.4-3.0

Si Fe Mn Mg Cr Zn

.10 .12 .05 <.25 .05 <.10

Zr Ti

.08-.15 <.15

other
(each)
<.05

other A1
(tot.)
<.15 bal.

Weldalite 049

Li Cu

1.3 6.0

Ag Mg Zr

O.4 0.4 0.14

A1

bal.

AA 2219

Cu Mn

6.3 0.30

Ti A1

O. 06 bal.

Table 1B Tempers and heat treatments

AA 2090

Weldal i te
O49

SHT 1000 - 1020 F , 2 - 6 % CW ,
aging 300 - 350 F for different times.

(T8E41)

SHT 940 F , natural age > 600 hrs. ( T4 }
SHT 940 F , 3 % CW , art. age 20 hrs. 160C(T8)

AA 2219 SHT 995 F ;
art. age 350 F ,
(T81)

18 hrs.
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IV. RESULTS AND DISCUSSION

The LOX impact compatibility test data are shown in
Table 2A-C. These LOX impact compatibility evaluations were
carried out by conducting tests under liquid oxygen under
f_×ed pressure at ambient pressure and upto 1OOOpsi.

For assessment of the LOX cryogenic behavior of the
Al Li alloys, it is first essential to understand the
precipitation mechanisms in these alloy systems, their phase
equilibria information as related to strengthening
mechanisms, and then evaluate and rationalize the several
metallographic characterizations and results of the surface
_tL,d_es.

A. Precipitation Strengthening and Phase Equilibria
in AI-Li based alloy systems

The phase equilibria diagrams of interest related to the

AI-Li based alloy systems under study are presented in

figures 1 and 2. As is well known , for an alloy system to be

amenable to age hardening , there must be a decrease in solid

solubility of one or more of the alloying elements with

decreasing temperature. Major alloying elements of interest

in the _ystems under investigation include Cu, Mg and Li.
Some of the information on the phase transformations in this

sec_tion is based on references 19-23.

Lithium produces order strengthening superlattice L1 2

type precipitates of metastable _t ( A1 3 Li ). Additionally,

phases such as T I ( A12 CuLl ) or T 2 (A1 5 CuLl ) are

potential strengthening phases alongwith 8t (AI2 Cu ).

It is further seen that with additions of transition metals

such as of chromium, manganese and zirconium with

solubilities less than 1 atomic % , potential improvements in

alloy properties are possible. With Zr additions grain
refining microconstituent precipitates of _0( A1]Zr ) are

known to be present that control the grain structure and

inhibit recrystallization in the alloy system.

The nature and formation of coherent particles of _! by

order strengthening mechanism, variations in distributions of

this and associated particle phases, interactions of these

with dislocations, subgrains, and grain boundaries and

loc_alized plastic strain , and presence of precipitate free
zones PFZ will affect the microstructural developments and
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thereby affect the strengthening behavior of these AI-Li
based alloys. With higher copper content and presence of Mg,
S I ( A12CuMg ) precipitates can be formed. In analyzing the
AI-Li 2090 and Weldalite 049 alloys, it is seen that only
limited phase equilibria information is available related to
these systems. These include investigations of Sigli and
Sanchez (20) and of Flower and Gregson (21), (23). The
additions of Ag and Mg give unique properties to these
A1-Cu-Li alloys. For alloy design considerations, minor
additions ( _.4wt.% ) of Ag and Mg are seen to stimulate
precipitation and promote the refinement of strengthening
phases. Pickens et. al. (8) and Langan and Pickens (9) have
identified _sS + T_ + TB phases for A1-Cu-Li alloy with
1.3 wt.% Li. The _ ( AL 3 Li ) phase is not considered to be
present if TB ( A1 7.5 Cu4Li ) phase is included on
_r_cipitation. These studies and identification of the
multiple phases expected in Weldalite 049, particularly with
var-iations Jn lithium , still need to be carried out in
detail to confirm their nature and effects on the properties
of these alloys.

The _ particles are spherical and in some cases
coprecipitate with _l ( A1 3 Zr ) , and with TI phase
precipitating as laths or platelets. Polmear and coworkers(24)
have attributed the strengthening to increase in an Al-b.7Cu-
0.5Mn alloy with 0.5 % Ag and 0.5 % Mg due to a Jr phase. This
3t phase precipitates with a plate like morphology and could
be another potential strengthening phase in Weldalite 049.
Studies related to this and T I phase are required to
establish th_s and the morphology and composition of this
_fL phase.

B. LOX Compatibility Evaluations and Metallographic
Characterizations

The LOX impact compatibility test results of 2090,
vintage 1, 100796 exhibited a rather violent reaction under
500 psi. LOX impact test conditions. This tested material was
sectioned and examined for reaction products. This same
vintage material had also shown at 100 psi. some holes in a
_eaction in which the impacter had melted together with
bottom of the cup of inconel 718 material. This was also
sectioned and examined for reaction products, figures 3A-c.

The A1-Li 2090 LOX tested specimens, in other cases ,
on reaction had only shown discoloration such as seen in
figure 4. These reacted specimens were sectioned and examined
For mic_ostructural characteristics and potential causes for
;he L 0× sensitivity and or reactivity of such materials.
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The Weldalite 049, with 1.3 wt. % lithium , _ 6 wt. % Cu
and 0.4 % Ag, 0.4 % Mg additions, as received material shows
on metallographic analysis effects of deformation , and
presence of multiple phases as seen in figure 5. Plastic
strain localization and unrecrystallized grain structure is
clearly seen This material of Weldalite T4 temper on LOX
impact test conditions had shown no reaction. These alloys
and also the Ai-Li 2090 materials of several specimens , on
etching with Graff / Sargent chemical etchant revealed

presence of coarse particle preciptates , figure 6 and 7.

Th_se particles on detailed examination are identified as

Cu/Fe rich precipitate particles. Wherever possible, these

particles were tested for their microhardness. Hardness data

of several A1-Li 2090 and Weldalite 049 specimens tested

clearl_ exhibited that these particles had distinctly higher

hardness than the matrix aluminum rich material , about

120 - 145 HV for matrix and 190-370 HV for the precipitate

particles.

[n case of AI-Li 2090 , vintage 1 , 100589, the as

eceived material on microstructural examination shows

typical pancake type microstructure with characteristic bead

like or a necklace structure , with few precipitates only

inside the interior of the grains. The localized

precipitation at the grain boundaries , figure 8 , appears to

produce the precipitate free zones PFZ areas. This causes

lithium depletion and possibly is responsible for weakness

and LOX impact sensitivity of these A1-Li materials. The

localized behavior , and enhanced effect of the PFZ's can be

batter observed using differential interference contrast DIC

microscopy. Effects of this and possible localized behavior

_t the grain boundaries are shown in figure 9. It is to be

noted that the extent of the PFZ and the extent of the

precipitate formation seems reduced from vintage 1 to

vintage 3 material, as also is seen less LOX impact

sensitivity in these materials. These effects could also be

related to processing conditions, less inclusions, and trace

elements such as Na,K,Ca,B etc. (25). The presence of

possible PFZ's is very sparse and highly isolated when

detected in case of Weldalite 049 alloys It thus is

indicative that the localized precipitation behavior , the

PFZ, and ofcourse , the nature of the precipitating phases ,

all are contributing to the LOX impact compatibility of these

AI-Li materials. With x-ray diffraction in some analyses,the

a!L_minum rich matrix was indexed but other phases due to

their small amounts could not be identified. As earlier

d_scussed, the SEM analyses could not detect lithium and its

r_lated phases with any microprobe analyses, but identified

the Cu/Fe rich precipitates in the materials that were
ei:_amined.
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showing limits of solid solubility (19).
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showing presence of _'( AI3Li ). (22).
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ORIGINAl PAGE

BLACK AND WHI'TE PHOTOGRAP_

OF POOR QU/_L_T;-'

(a)

Fig. 3a AI-Li 2090-100796, vintage I, LO× tested , 500 psi.,

cu_--away section of the reacted specimen

"v

(b) (c)

Fig. 3b anO _,c AI-Li 2090-10079b, vintage 1, LOX tested
100 psi., As reacted (b), and cut-away of the same (c).
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ORIGINAE PAGE

BLACK AND WHITE PHOTOGRAPH

(a)

_4

(b)

Fig.4 AI-Li 2090 LOX tested , at 100 psi. As reacted

impact test specimen and test cup, (a)3/20 (b)2/20
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ORIGINAE PAGE

BLACK AND WHITE RHO-[OGRAPJI

(a)

(b)

Fig.5 AI-Li Weldalite 049 As received (a) transverse

section , lO00x (b) longitudinal section, 200x.

This material shows no reaction on LOX testing.
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ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

(a)

(b)

Fig.6 AI-Li Weldalite 049 (T4) As received

(a) longitudinal section Graff/Sargent lO00x

(b) transverse section Graff/Sargent 400x.
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ORrG_N,a,_. PAOE"

BLACK AND WH!TE. p,,L_,-t©L_RAPH

(a)

(b)

Fig.7 AI Li 2090 - 100797 (a) LOX tested, 50 psi.

(h) LOX tested , 500 psi.

Graff/Sargent, lO00x .
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ORIGINAl.: PAGE

BLACK AND WHITE PHOTOGRAPh

(a)

(b)

Fig.8 AI-Li 2090-i00589 As Received (a) longitudinal

section and (b) transverse section s 1000)< .
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ORIGtNAIIPAGE

BLACK AND WHITE PHO-[OGRAP_m

(a)

(b)

Fig.9 AI-Li 2090 LOX tested micrographs showing possible

PFZ's and localized behavior at the grain

boundaries (a) 2090-10079b , 100 psi. and

(b) 2090-1000797 , 500 psi; unreacted .

VIII-21



C. Surface Studies and Analyses of
the Reaction Products

XPS (ESCA), SIMS and Auger Spectroscopy (AES) techniques
were used in analyses of reaction products after LOX impact

testing in cases where severe reaction had caused the melting

of not only of the test material but also of the test cup and

the striker pin in the test assembly. In these , the test

_pecimen , the inconel test cup and the test pin in

examination of the section of the reacted specimen exhibited

severe oxidation and gouging of inconel 718. In analyses of

the grayish material of the reaction product, the

characteristic peaks of these in ESCA related to mostly A1

and 0 and small amounts of Cr. A1 to 0 ratio in reaction

product is found to be 0.64, close to that of A1/O ratio in

A1203 . These analyses , also, could clearly detect the

presence of Li, at 55 ev , and also appear close to peaks for

L_O. In SIMS and Auger Spectroscopy, the dark gray material

of the reaction product was analyzed . In these AES analyses,

the surface charging was quite severe making useful signal

analyses impossible. However, this in turn confirmed the

material to be A1203 which is highly insulating in nature.

_IM_ and ES_A analyses confirm the presence o÷ lithium and

that the reaction product is Cr contaminated aluminum oxide.

Th_ identification of lithium and lithium related phases,

for ° microanalyses and imaging of phases effectively causing

the sensitivity could not be analyzed with SIMS equipment

available at MSFC. A survey of related studies in the

literature (26-29) for microanalysis o_ precipitates in

aluminum lithium alloys indicates difficulties related to

these analyses , and that these quantitative analyses

possibly can be carried out with Scanning Ion Microprobe or

_ith SIMS equipment with direct imaging capabilities for

_urface analyses of the bulk specimens or with Electron Loss

Spectroscopy studies.
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V. CONCLUSIONSAND RECOMMENDATIONS

Based on the LOX compatibility evaluations of the A1-Li
2090 and Weldalite 049 alloys and their relationships with
the microstructural characterizations and the surface studies
carried out in this study, the following conclusions can be
made. Recommendations for further work are also made .

i. While Weldalite 049 is mostly seen as compatible in
LOX impact tests, in AI-Li 2090 lithium makes this
material more sensitive at grain boundaries in some
cases due to PFZ's.

2_ The AI-Li 2090 in LOX impact tests has shown improved
behavior in vintage 2 material and has no reaction in

vintage 3 ; the several factors related to this could

be due to processing conditions and less inclusions,

cleanliness , lower Na, K, etc.

3. The reactivity or the LOX compatibility behavior as

related to microconstituents in case of AI-Li 2090

appears to be due to the strengthening phases such as

GI ( A13L i ) , et I and T I .

4. The strengthening behavior in these A1-Li alloys is

mainly due to order hardening , and involves

different particle sizes, shapes and distributions.

In addition, there can be gross inhomogeneities such

as PFZ's. The additional mechanisms o÷ modulii

strengthening and coherency strengthening to some

extent also affect the strengthening behavior of

these materials. The presence of Zr inhibits

recrystallization in these materials and precipitates

the _i phase.

5. The _tphase is L12 ordered strengthening phase ; the

coherency stregthening is not a very valid factor in

strengthening as the misfit between the matrix and

the _I phase is very low about 0. I %. In addition to

the very fine strengthening phase as small _I nearly

spherical precipitates,_ ( A12CuLi ) and T2(A15CuLi)

_an precipitate in plate like morphology. The sizes

and amounts of these phases are small and their

characterization requires selected area diffraction

pattern (SADP) and transmission electron microscopy

(TEM) analyses. The localized precipitates in the

metallographic analyses carried out are seen as
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coarse Cu/Fe rich precipitates in a certain necklace

type configuration in case of some AI-Li 2090 alloys.

In addition, some of these precipitates could also be

present in some case on secondary grain boundaries.

In Weldalite 049 type A1-Li-Cu-Mg-Ag alloys_ other

multiple phases such as T 1 and Sl( Al2CuMg ) can

coprecipitate with the _I .

The additions of Ag and Mg are also considered to be

giving another phaseJ_. Additionally, T 2 and T B

( AfT. 5 Cu4Li ) phases can precipitate. The several

dislocation interactions with these multiple phases

further affect the properties of these materials.
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RECOMMENDATIONSFOR FURTHERWORK:

I. The SEM microprobe phase analyses should be carried
out as far as possible to identify any phases without
Li that possibly could be detected with these
analyses

2. The LOX impact compatibility would be related to the
amount of Li and Cu and a critical ratio in these
commercial alloys. These variants in chemistry should
be analyzed to identify and understand these effects.

3. The LOX impact compatibility and the sensitivity at
grain boundaries needs to be analyzed in more detail
ar,d in sufficient detail. For this DIC differential
interference contrast microscopy can be further
utilized.

4. The grain boundary effects and any sensitivity in
these A1-Li alloys has been searched by some authors
÷or effects of Na, K, and P. Ca and B could also be
aTfecting the sensitivity behavior. This needs to be
analyzed for any eTfects on LOX compatibility .

5. The effects and analyses of the several
microconstituents in these commercial A1-Li alloys
deserve further detailed study with microanalytical
phase studies using TEM as necessary , and possibly
with differential scanning calorimetry DSC
techniques.

6. These above studies should be used to coorelate and
_ompletely understand the LOX impact compatibility of
these newer and significant low density, high
specific strength A1-Li alloys.
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